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SUMMARY

Chaplygin introduced the hodograph method in the the_ory
of compressi~le fluid flows and developed a method for q$&w--
constructin.-gistream’ functions of such ,floti=.,,T,.hismethods

--—.--

whie’h has been .,?.xtensivelyused in inve,stigati,on of compress-
ible fluid flows, is l,imit.edin certain respects:: The ex-
pression for the stream fun.c%ion .obtaAned in this manner. can
reprssent onl}v.,cer’tai.ntype,F of flow paitt,e:rns,:IF. generals
flow patterns obtained in this way cannot represent the whole
flow around an obstacle, ,but only ,a pa~..t,of such a flow, and
therefore sev,eral expressions are, needed in order, to. obtain
the whole flow.. On the other hand, ~in many I-nst.antes, It is
important to hav”e a. ,single expression repre,sept.~ng the whole
flow. ,., . .,. , $!, . .. .,..—.;.-,,...-

.--. . .,, ,
Recently Von K&rm&n and Tsien constructed more genor-al

tynes of stream functions, but only by replacing the true
pressure density relation. : - -

—
.,

,.

P = Csp
~.

by the linear pres”hure-~pbc~fic volume relation
—

P =A+~-
. ,. P

(A, “k, and ~ are constants), so that their method ie essen-
tially limited to flows the”maximum. Mach number of which is
not too large. .. . ,, ,,

1
In’s companion report the author” derived a new ‘formula

for stream ”functions based on the true pr”essuie densitjr’’re-”
● lation
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NACA TN NO. 973

It is not subject to the limitations of the Chaplygin method.

In the present report thi6 formula is employed to con-
struct two-il.jmensional subsonic com~ressible fluid flowO
around a body similar in shape to a g$ven eyrnmetric obstacle.

The methods described in the report are illustrated by -
numerical examples.

INTRODUCTION

,.
.

‘ In’s companion report (referemc~ 1) the aut_h_ord.eriwed a :
formuI& ’transforming an arbitrary analytic function of a com-

—

plex vkkieble, g(z), inta a function $(X”,Y) which satis-
fies the dfff’erentf~l e~uatton. for thb st~e~.m fu”nction” of a?

..

two-dimensional potent~~l gas flow. (It ie assumed that. t.he
.“

pressure of the fluid is a “function of its density.) - , t,..

,lqThis report describes the application of this formula ‘to
the determination of a glow hround an obstatile. First; the
actual’ commutation of the stream function generated by .an
analytic functio’n is. de-scribed in detail. Then varfous meth-
ods for choosing the function which yields a flow around. a
given obstacle (or at least around a shape similar to the
gi’ven’one) are discussed. :

.
., , .,

The procedure is illustrated by eomPletel’y- carrying au>
the construction of the compressible flow generated by the
function

g(z) =& ( 1 J-
——

-+ ,1

2 ./C- 2ez )-.2ez,

In the case of an in&ompressible fluid thie function
would lea”d $0 the’ circ~~laijf.on-free flow ar,o,unda circular
cylinder. In the case of a .cornpressible .flu~d ‘a flow around
a cylinder of somewhat distorted cross section .is obtained.

Tor the mat-hems,tical.justificat-ion of the formulas used, ‘

the reader is referred to reference 1.
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NOTATION

a epeed of sound

EL. speed of sound at a stagnation point

f(z) analytic function of the complex variable z

. g(Z) analytic function of the complex variable Z

g~n+~)(z) nth iterated integral of g(Z) (See (16). ) ‘-
I ...

H a function of a real variable occurring In. the formula
for the stream function of a conbress~bl.e fl~~ .(See
sec. 2.)

k exponent in the pressure-density relation
.-

M Mach number (M
.. ....—

= v/a)

~(n) function of a real variable occurring in the formula
for the stream fun,ction, of a cQmpressYble flow

Tn imaginary Tart of g(n) considered as a function of M
and 6 , 4

v speed (magnitude of the velocity vector)

Vlsva components of the velocity vector

w =cQ+i* complex potential
.“ .

z =X+iy complex variable in the physical plane
●

z =A-i.g complex variable in the logarithmic plane
,=

m 6 angle between the velocit<y vector and the x-axis
.-=

—

.=

-.. — _

-8

.

.,-
\,

_.—-
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.

for an incompressible flaw: logarithm of the speed; for ‘
a compressible flow: a given function of tlr= local
Mach number (defined in sec. 2) (The ~ of thi8 re-
port is not to be confused with A of reference 1,
to which it is similar, but differs from it by a con-
stant.) ..

CP velocity potential

~(n) (See (20). )~n real part of

if stream function

i-fn imaginary part of g(n) (See (20). )

1. Construction of a Flow by Means of-Analytic Functions of a

Complex Variable (Incompressible Yluid)
.

The method used in this paper consists of generating
two-dimensi onalcompre s.sible flows b~y means of analykic func- ‘
tions of a complex variable. The method is best explained by
first considering the case of an incompressible fluid.

There exists a very simple method of constructing pat-
terns of a two-dimensional. ‘steady ir~otitionel flow Oean ilI-

compressible- ~erfact. fluid %y means of analytlc functiane of
a complox variable. Let

w= f(z) = Cy(x,y) + i$(x,y), z = x -1-iy (1)

be such a function. T-hen p and ~ tiatisfy the La”@lace
equation,

where p can be interpreted– a’s”’thev“elocity potgntial of an
incompressible flow; * is the strea”m function, and

$(X,y) = constant

.

*

is the euuation of a streamline. ‘
8

.
Tor instance,
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w=$(z+:) =‘(;: t,+”;i “;(X;2+‘2)., . ..,, ....
represents a circulation-free flow around a circular’ cyll~der,
for Imf~$ is constant for i ]Zl =, 1, (See fig. 1.)

Unfortunately, this, .si~ple method cannot be exten’ded t-o “ ““-””
,,the case of a compres’sthle fluid. , , . -..

Now, let vl and’. .vz ~e.~he velocity components of the
incompressible flow . “ .

Let v be the speed and ‘6 tha angle between the velocity
vector and the x-axis. l?hen —

,.,. ,,,
..”.

,,
‘vr - iva = ve

-i6, dw -
‘G

(3) .—

Thus VI - iva is also an analytic function of z. By vir-

tue’ gf (3) to each point (x, ) of the-physical plane, ”there
corresponds a pcint (VI, -vz 7 of the plane the Cartesian
coordinates of which are

,.
Vls -va (hodograph plane), In

this way ati.image of” the flow in the (v>, -va)-plane is ob-
tained.’ This image is called the hodograph of the flow. It
may happen that at two diff6rent poifits of the (x,y)-plane
(physical plane) VI ,and V2 have the ~ame value. Then,

to these two points there corresponds the same point in the
hodograph plane. If it is’desirable to have a one-to-one
correspondence between the”flow’a~ld it~.hodoqraph~ the latter
muGt be interpreted as a “Riemann surface.’i [See rO”ference
2, pp. 27’,.”59-SO, etc.) , f .,,. -, .. .. .

,.J..
For the flow (2) .

b -....:.

.

The hodograph of the flow consists of,all points within the.. . ..

circ10
)

(v -’L 2+ Va” = ~. Each point of ‘the hodogrtiph
‘L 1 2’ 4

.

corresponds to two-points in the <z-plane. (See fig. 2.)
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a

In the hodograph plane v and ,-6 are polar coordi-”
nates.;: “

The ~llogarithmicll plane is defined as the ulane in
which A ~

A=logv
...

and -6 are the Cartesian, coordinat es. The complex variable
in the logarithmic plane is .-

.- “,, “ ‘r ‘.,
z ()=h - ie = log Qg (4)

The transformation (’4) maps the hodograph of the flow into
its. image in the logarithmic plane. Note that the mapping of
t“h’ehodograph plane into the logarithmic piano is indepe,qdent
of the flow. .,

*
For instance, the image of the flow (2) in the logarith-

mic plane Is the (doubly covered) domain bounded by the curve”
,

A ~. 10g, 2 + 10g cos e, - ;S e S z (.5)

(See fi,qs, 3 and 5.)
~,.. ”’”

. .

From -the -basic properties of ap,ialytic functions ii “f~l-
10WE ‘~hkt the comple”x pot;nti~l ~,,:“ also, can be co”nsi~ere.d”as
an aniilytie ?u’kction of ,

4. ..’
.:. w= f(z)

-. ,. .“.,.
.,,,

,~o~ in,sts,nce.,far ~he flow

.,.,. .
..

!.

/,’
.1-

. .
z = log+

t “ 3; ‘hat~,,
and therefore

[
g(z) = $ (1 - ~e’Zj4 + (1 - 2ez) -4!

1
(8)

., ,, , ,.

The streamlines in the physical plane (,-z-plane) corre-
spond to the I.i.nes”in the logarithmic plane alohg which

—.

.

,+ ,.. To(~,e) = Irng(z) =1#
..-:.-

,. (9)” ,

is constant.
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,
For” the floW 4(2)

T.0(A,6).=’Im
[1

g(z)
.,

.,
. .,.

1

[

- ..
_.(1 - 2eA Cos 6) + .(1-

1
2~)+ i .:4eA cos 6’:+ 4e

= 2&

x
,[

1-” 1

1
(lo)

(1 - 4eA cos El + 4e
2A @-

(The values of, T,. are given in table 111 and plotted. in

fig. 5.) In this ,example the” streamlines are the same in
the’ two sheets of.t>e Riepann surface. -----

Now, let an arbi.trary.:apa>yti.c function g(z) be given.
. It always is possible to interpret this function as the com-

plex potential (in the logarithmic plane) of an incompressible
flow in the physical plane (z--plane). The flow in the ?Yplane

● can be determined as follows. Since w(z) = g$z”)t - “.and

z = log & dog+ + log ~

then

or

, . .. . . .
dz “ ~e-z. ..,:
zz=dz

. .,,

z “=.‘f La&’e-z &z “, -
... dz

-,‘.
_. ..:

Integration along a Streamline (in the Z-plane) yields a
streamline in-the z~plane. In this-case the foregoipg \nte- “
gral can tie written in the form

. .

... ...- .—

In order that the flow be physically possible, it is necessary
that the streamlines do net intersect.
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Application of this procedure to function (4) leads back
,

to the flow (2).

By means of the foregoing method of associating w%tli
every analytic function the Z-plane (logarithmic plane), a
flow in.the z-plane (physical plane) oan be extended to the
case of a com~essible flow.

2. Construction of Flows by Means .of Analytic Functions of

a’Cornplex Variable (Compressible Yluid)

Consider ‘a-two-dimensional subsonic potential flow of a
compressible fluid (in the Z-plane); It is assumed that the
density p and the pressure p are connected by the relation

(11)
,J

,.

where A, U, ,and k ~ are con”stantg. There exists a stream
function V(x,y)’ such that

— *

(12)

are the components of the velocity vector in the x and y
directions, respectively..-.,

Let M be the local Mach number

M
/[

= M(v) = v aoa-; (k- I)v21
i

..
(13)

where ‘“-ag is the speed of sound at rest, v the speed ‘of;
the flow, 0 the angle between-the vel~bity vectar and the
positive x-axi s.

;~=,og[~;;::$](;::::::;~j ’14)

,, ,,
.,

. . . . . . . . . . .

—
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.
where’ . . , —

$’

[ ,1

.’
h= k-l, k>>
. . k+, l

. . .

(If k<l the definition of A must be changed. (See ref-
erehce 1.)

The logarithmic plane is defined as the plane with
Cartesian coordinates h, e. The complex variable in this
plane is

Z=h-’ie ,.

In the Z-Plane X, which may be considered as a function
of A and 0, satisfies the equation

,.
{

.

b

where

N. -(k + 1)M4

8(1 - M2)3i2

This is a linear eauation and its treatment can be facili-
tat,qd by using results from the highly developed theory of
linear par”tial @inferential “ea-uations. Let g(z) be an ar-
bitrary analytic function ’of Z. Using this function, .a
solution of (15) Gan be obtained as, follows:

* ..

Set ,. ..

,.. .

g(o}(z,) ‘ -= g(z)
.. . . .L

,.

“-r(16)
(n+l)~z~ =

f

‘g(n) (z)dz, n = ~, ~, , ● . “ “g
..
0’”””

..

There’”exist fixed fun’ctfons of ‘a real variable-- ~

.
Ii(g), Q(n)(!), n= 1, 2, . . .

.

such that the funotion
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[w(5’*) =‘(2A- 2a) lm.~@)+* Q(+2A - 2a)1mg(’)(~~,.

+ (an)! Q(n)(2~ - 2m)Im ~(n)(z) + . . . .1“(17)

2ann ! . .

(m a real constant) satisfies (15): (The representation (17)
is an approximation to the solution. The exact formula
proved in reference 1 is ,

‘[
...

0 (&,13) = H(2A - 2a)mlL In g(z) .: .

.. .
●

02
‘( Zn)!

+ 7 Q (+2A-m 2d4%) “(18)
n~~ 22nn! 1

where r-z is an arbitrary non-negative constant

,

.

.

In the, example under consideration i,t“i-sre,pla”c~d by (1’7

since the Mach numbe’r is comparatively small and the Qm i:)

do not differ consld,enably from ~(n)
.

. If, however,” the
local Mach number approaches the value 1, it iS neces8ary to
use the exact formula. (Another form of formul

?5
17) is

given in appendix I.J) The functions H-dQn depend
only upon k and v. Th6y have been defined by a recurrence
formula and com~uted for n = 1, 2, 3. (See reference 1, “- “-
sec.12.) Some of thkm are tabulated ‘in tables Ia and Ib and
plotted in diagrams .14aand 1%. . ., .

.,

Once ~ has b~en determined as a.function of v/s. and

6, the tran.sitton. to the ~hysical plane (z-plane) is given
by the formulas -.

.
,,.. .,” .

.
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v

-f

p. Cos 6

“o -
pv2

f

‘,po sin 6

“o
pva

v

r

d.v+”
p. sin 9 M2$

pv2
“o

11

dv

1(19)

iv

where “the integration is performed along a streamline (i. e.,
along a line ~ = constan~) and the subscripts 0, v denote
partial differentiation, ------”

In this way an arbitrary number of streamlines in the
physical plane (z-plane) can be ‘drawn. It should be noticed
that along each streamline $he value of v/s. is known and

therefore aleo the values of the local Mach number, “the fi~&s-
sur e , and the density.

The next section contains a discussion of the actual
computation of the function ~ and of the streamlines in the
yhysical plane. .

Two additional remarks may be made:
. .

1. The series (17) converges rather slowly for valuee of
v in the neighborhood of v = a (i. e., M= 1)..This iS

not due to a eingularit~ of $, since it is known that Q
is regular in the domain concerned. Therefore ‘it is possible
to replace (17) by othe,r expansions which converge more rap-
idly. (See reference 1, sec. 1%) The author also.w}ll treat
‘this ciuestion in a future puhlicatio~~ .. .-..

2. It is known that the theory becomes especially simple
if k = -1. (The pressure-specific volume relation then be-
comes linear.) Therefore it is interesting to ‘know how V
(generated by a given analyt.ia function g(Z)) changes “~f k -
varies in the interval (-1,2). Tor thie reason the computa-
tions are carried out for two values of k, k= -0.5, and
k= 1.4 in’the example given ih Vhe following section.

,,. ,! !
3. Actual Computation of the StCeam Function, Using the,:

Generating Op,eT.a~6r In the Form (17)

The actual computation of a compressible flow given in
the logarithmic plane hy an analytic function ..g(Z) consists
of the following steps: ,.
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I. Computation of the function ~(n)(z)

m

—

,

#

II. Construction of the flow in the logarithmic plane

111. Transition from the logarithmic plane to the physi-
cal plane

These steps are discussed in detail in the present eec-
tion. The procedure is illustrated by constructing the com-
pressible flow obtained from the function

[

-ig(z) = ; (1 - 2ez) +(1- ~ez+
1

(8)

(For the case of an incompressible flow this function yield~
the flow around a circular cylinder; see the first eection.)

Step I.- The functions g(n)(Z) have been defined in
the preceding section. In general, it will be impossible to
evaluate the integrals in closed form

z

~(n+l)(z) = ~ g(n)(Z)dZ

A+ie
Jo ,.

f [ 1..

... .
~(n)~~,e) + i$(n)(~,~) (d~ - i~f3)=,

,..
-.’. 0 ~,kj ““: ‘ ?@”-..

f r“’””(;(n)d~’: w(n)d O),+,i “
.,

(_q@d9 +--.$(n)dA)=

“o!. “o

,where .,

(n)
~+lqn=g

h?w$ver , it ‘is ~ossibiO to use numerical integration.

(20)

Since

.

.—

.-—.
—

Jvz) is an analytic function ofa complex. variable, the
~

value of the integral

f

g(n)(z)dz is independent et-the

“’o
.

,’
path of integration. 1.A very conveniefit”path conelsts of the
interval [(0,0), (AjO)]” of the negative real axis, followed s -

by the Interval [(A, O), (h,e)] along a line parallel to the __
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.
6 axis (provided this path,.lies with,in the image of the flow
in the logarithmic ‘plane. ?f this,doks no} take ~la~e,~an
obvious adjustment”. muik he mad,e.) ““”Dividing each of the’se ~n-
tervals into s subinterval”s A~k, A6k gives approximately

r . .
s ., s s

g(n+l)(z) ~ I ~k(n)AIAk= + i
I

Vk(n)AAk +

L

~k(n)AEIk

k=l k=l =
., ,.

., s
L. .,.. .- “7--”i “ ‘:;k(”n)Aek,.,, , (2i)., . .

ksl
.’. ,, . . . . .. . .

,,. , . Tn ‘many instances it is more convenient ‘to ~x~a.d ‘g(Z)”
Into an infinite series and then integrate term by”te-rm.
However, as a rule, function g(z) has singularities, and
several. series developments Are “needed in order to cover the
domain in which the function is to %e considered, For”sthe”

. ‘case ,of function (8) integral j gdZ can be com~ut’ed in
closed form., Then

., ,..
. . . ..-.Z, ..; ; ,.? ..-’: ..”

. .,,-..
.

“. ,
..’. .rIz(z)dz =(1 -

[

;:2)+ ~
+ log e - 1+(1-

1
;ez)& ;

J
,.. ,

,-~, & ‘ .-.’ ‘::; ;
1’

‘. ..,.

. .

- ‘-i (2v)-’22)
and -.

;Tl(AJO) = Im
L!f]

g(Z)dZ ,, ,,... .
,.

[

:-

‘h

L .A:f:;:~;;:c:-~
-(1 - 2eA.cos6) + (1 - 4eA COS6 + 4e )..

. T.... . ... ,- ‘-”~:’h’ “- -“--

‘)(l-
~ei”.cog * + 4e2A)*]

2*eA sin 0+[-(1 -2eAcos 0) (1 -

J
(23)

.: 1 ~a~ex cos ~ - 1) -.,C(1 - 2eA co. e) + (~ - Lex cos 0 + 40m)%

,-

. ,..

. The functions g, TO(A,6), and Tl(h,~) can be repre-

sented: ?ST.t,he~following ser,ies. For rO.691 < h < 0: ‘., . . . . . .-
.

—
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7Z/2
45 ~- -. . . .1

2048 J

45
(

XZe
-7A/2

+ ——
2048 7

.os(&)-,) +..

For ~ < _O”.691t

[

1
g=-zl+~e

2Z
+~3z+Xe4z +ie5z +”.*.

8 2 1
,,

[
30 3= -2 .Le2A 3A 4A

2’
sin 20 + e sin36+~e sin 40

*1.
.

,

(24)

.

,
●

(25)

,

-J
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Ste~ II. - The co~s”truct~o”n of the. fl.oy in the logarith-
mic plane can be conv.en.i-en~lyperformed on. specially scaled
graph paper. One f~art-esian”).c~ordinate~axis is taken as
the 0-axis,, the other asthe M-axi s. In addition to the
values of M’ s’tales showing, the .co.rre.~ponding values of
A(M) and v~ao should he indicated. Such scales may be
premared once and for all, for each given value of k. (See
(11) and (13) .) In diagrams Ia and Ib. these scales are
drawn for k = -0.5 and k = 1.4.

The values found for : .Im g (n) ~re entered on this paper
and the lines .’

Im g(n)(h - ie)’;=”’constant - “ ‘ (26)
,., .-. ..

are drawn. In this w~y th~~e”is ’o~tained””by graphical int~- ““
polation the values of the functions

,,..

Tn(M,O) = Im
{, [
g(n) ~(M) - ie

1}
(27)

. .
The function W(M,,6”) is’”determined by fokm%l~~(l?) . .

In applying this for”mula. i”t’i“s necessary to choose a.,de’f~nite
value for the arbitrary~”bonst’ant m, In general., it is..pos-
sible to choose “CL so’“thak the terms in the series. (17,).be-
come ,small for large. ya.Lua of. M. In the example under con-
sideration a is set equal to. 0.1”:

In order .to obtain the func.tion~”“~(M,9:)““it is necessatiy
to evaluate the products . “ ‘ .

. — —

(2)(@T2(M, e). - “ “ . .- A(l)(M)T1(~,Gi~.;..,4
$Q ‘Q (28)

. ““’’’’’Q(n)(M)can be tabulated once
The values of the functions
and for all (for a given +alue of ‘‘k):’F”iT-heabove products
can be evaluated graphica3.Xy~ “by means~”of’:a simple, aomogr.am,
shown in figure 4.

Adding a finite nuhber of the terms in-the series (16)
and multiplying by H(M) (a function tabulated once and for
all) (see tab~es.,Ia, Ib), gives an approximate exp~i%ion for
$(M,9). Finally, the lines ‘V(M,6) = constant (stream
lines) are drawn,

For function (8) ~(M,e) has ~beq,n,.,comp~t-e,~,,for k = -0.5
and k = 1,4: For k = -0.5 the se$i-eE h’as teen ‘re~~aced by

—
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$1(M,9)* X-f(M,6; - 0.5)

{’ “[

. .
= Im H(2A - 0,2) TO(M,9)

+:Q(l)(:~~-O;)T1(~,#)]~”; ~=~(~) (29)
2“ ‘“

“., .
‘J

,

For k= 1.4 “the series has been r-eplaced ,by ~~

f= Im .IH(2A - 0.2)
[
To(M,@ ,? *:Q (.1)(2A _ o.2)T~(M,6),,

.

3 Q(2)(2A,--l—_ 0.2)T,a(M, e)
.1

~, A= A(M)... .
4 --” ,,

‘~ ~~ o ’30)..,

The streamlines (in the logarithmic plane) are shown in flg-
.ure 6 (k = -0.5) and figure 7 ,(k = 1 ..4-).,,

._.- The flow 1.s first transferred from the l~ga-Step 111
r,ithruicplane “to the hodograph plane, ‘ This.-is done by usinfi
(for the.hodogtiaph plane) polar coordinate gra:~a;aper. The
polar, coordinates in”the hodogr~p’h plane are’ and 0.”
Since for each plane the value’s of v/a. ,and 0 are’ known,
“’the transition presents no d’iffioul,~les.

..,.
..,.

#

.—

.—
.—

The hod?~raph .stream~ine s of the $1OW generated by the ..

function (8) are shown in”figure”8 (for k = -0.5) and in
figure 9 (for k = 1,4). —

In orCer to obt.ain’t-he strea~lfnes ,in’the uhysical plane
it Is necessary to compute the integrals (19) along the
strearnli,nes in the hodograph plane. ,,,.

,,.,

@v= R (o) ‘lmgZ+R (+),:Im g ~ 1, ~ @ ‘Im g(l)
... -

,.,
‘j ~{.3) ~m $?) +:.,, .~.,:+- ,(31),,,
4’

.0,,

1

>

(Se,e reference 1, ‘see.’.l).)
,.

.

.
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where
-1

,., ,, . . . .. ---- .;~’

“[rR(n) ,= “~(2n- 2)”!
(
“’HQ(n-,l),

)

~, 2n(2n - 1)

1“
~}(32)HQ(n) :

2n-2(n - 1)!,
A “ “

2 4n d“vj ~~.

I,.. ;.,

n = 2,3, . . . ..-),:.
:’,-. .,,.-

and ,

.[

“i ‘-(l’).Re ~ + ~ Q(z) Re. .g(l) . : ‘..”.=H:Reg +-*Q” ., ,, z ~ ,Q ,---.- ,.. . .
.

, . . ..’

+=Q
(a) ‘+.- “.‘3) Re..g, . .

1
(33)

8
.

The, values of R(.O)
R(4)

1 ...9 for. k = 1.4 are given in
o table. Ib.

. .
,,

The formula’s for ““t”hederivatives of To, TI for ‘the
case of the functi’on .(8) are given” in ‘apfiendix711 . The ~al -
ues of the derivatives of’ @ are gi”v.en’in table III.,. ,..

The func-bio”n~~p - which enters” in thd in”tegrand””also can
be tabulated ante and for all.

The integration Is to be performed graphically. When a
number of streamlines in the physical plane are drawn, a
rather camplote picture of ,the”flow is obtalged”. ~n,factl, :
f’or each point in the physical plane for which the ‘gor-relipon5-
ing point in the hodograph plane is known, the value o~,.$he
smeed, nressure, local Mach, number, and so forth, also is
known .

,. . .
For the. function (8) ‘$t”.turnk”out tha~”,a“part of the

streamlines *=O form-s a closed contour. The streamline
starts at +3 end ””dividep.’it,self in$o two, branches at the
first. sta”gnation: point.. ?JP.e”.two.parts c“ome together at the.
second stagnation point , Th~s a.flo~i around an o.bstacle.has .
bmeen obtained. ‘ @h&” bo”tindar~ of;,the” ob~thcl-e”(”forfl” k = -0-.5).

is shown “in figure 10: ~~
,.
., ——

—.
lFor k = 1.4, see p. 21.
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4. Determination of’ the Function g(z) .,.,,.,r

Which Leads to a Flow of .Desired Type ,...,.. .

It has been shown that every analytic function
leads to a,compressible flow in the z~plane (physica~(~~ane)
Th& type of the flow obtained thus depend& upon tho choice of

.

g(z).

If it- is desirefi to obtain a flow around a given obEta-
Clel, or at least around an o’bstqclo similar to a given one,
it is well to proceed as follows:

First, determine the incompressible flow around the given
obstacle and obtain the coruplex potential as a function of
logv-i6. (By using Theodorsenls method (pefer;~jy,3) this
problem can always ,be solved.) This function, is
t~ansfoxmed into a stream function of a compressible flow.
Assume that the compressible flow in the m-plane is a flow
around a closed b;ody.l

Let B be the original profile, 31 the boundary of

tho obstacle of the compressible flow. Clearly, BI Will

be different from 3. Tor instance, if B is a circle, there
is obtained (for certain values of the arbitrary constant a
entering in the computations) the profile shown In figure 10.
The profile distortion can be represented by associating to
each point z of B a point z of J31 and writing

.

.

.-

.

Z1 =z+d

(z, ‘ a219 are complex numbers) , Now, the ~rofile B*
the.points of whi,ch are given by

“in the opposite dlrec-can be described as being distort-cd
tion.11 If” 0R3 were” tb construot the incompressible flow

lNecessAry ‘and efficient conditi’on’s for a, function
V(v/ao, 6) to lead to a“ flow around a closed “body are”d6-
rive.d in reference 1, sec. 14 . If the original profile is
symmetric with respect to both the real an’d the imaginary
axis, the compressible flow pattern will always flow around
a closed profile.

.

‘.

.
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.
around, B*, commute “it; cotip”lex potential in the logarithmic
plane, g*(z); and use “this function ‘to.’o”~t.ain a compressi-
ble flow, it might be exmected that a’flow ‘Around a profile
B2 would be obtained which bett6r approximates :‘~. This .

procedure may be repeated. ‘“”’”:’ i- -“ ‘- . . . .
: ~. :.

In general, the function g(Z) will be of a very compli-
cated form, even if the complex potential in the physical”- “’
plane is a simple expression. Therefore, it is convenient to
know functions which can be exppbssed in a closed form ‘by ‘“‘—
neans of elementary functions, and” w’hich “are ~otentials” of”;
incom ressible flows around closed -profiles “(in the -physical

7plane . Each such, function ‘lehds to compressible flows of
si.mi.lartype, and the computation of these. flows is re~atively
simple.

A f’unction of the desired type depending upon th.rmeq.arb-i”-
trary parameterswill presently he constructed. By””the foliow-

. ing. success~.ve, transformations, g as a function of. Z i-s ~,.,:,-
d“ete,rmi,ngti:,.“ .’ , - . , : “ - - -.. ..... .-

.,
. g = izl (34).

;..“ .. ,.
,.. . ..-”

.,, ,-

z~ =
Azl , ,,

-,..,O,<A<W, O<c?<oa=””” “:”~35)
,,. C+z.l. ,,, ,., -:

,, .,*
, . . . .,:

..
23 = (36) ‘“

. .
‘,,.-.,,. ,.

m“ $ “IZZ. ‘.,, 24 =
. .

-i log ,’. ,-I. m real .. (37)
m - ‘iZ3

,,...’
. . .

. ~6”=@’:,& -- ,38) --
,., ,, . .:., -, ,,

. .. . ‘, ‘z” = log 25” .“ ““ (39.) m -.-
. :t ‘. ,,, .- ;.

Here , A;~”Ci”rn ‘are ‘arbi,tfiar~constants. The right half .
planeof tli~- Z1-plane ‘i’s.ttiken.into the dom”ains indicated -

.-.

. in figures ilti ii llij did int”~’the” domafn indicated” in fi”g’~”-
ure 12. Now, consider a Riemann surface consisting of t~o “ __
sheets ‘s~rb~d G“ver“.tlie.tibhainof the z~-plani (fig. 12> and.

. posses,si~g a’b~~nch ‘potnt- at the point a (corresponding to .-

g= b) ; Func~i6ri’ ,’&jCZ) “mapS’th~s” Riemann surface into the
—

r...: ......5<. , ;,, .... ..“.’.-. .... .. .. .-—
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‘exterior of a slit along the’ real “axl”s (in the g-plane) .
Therefore the domain ,in “Z5-plane’ can be inte,r!pr”’e%.t?das a
hodograph of a “circulat’ion-f%ee flow aroun~ a“ sl’end.er-Symmet-
ric body with a“ &htirp-tfailing edge.,“and g’ is the complex
potential of the flow (provided thq. c’on~t.ants are chosen ~.n..
an appropriate way) .

The Z-plane i-s the I.ogarithqic plane ‘for t-he above-
mentioned flow’ and therefore g(Z) can “be t“ran$forme~ in.to~
a stream function of a compressible flow by the method, given
in the preceding sections.

,.
,,

The computation wi”ll be facilitated by the relatively

simple form of g. .,

.

.

-.

-.

—

CONCLUDING REMARKS ‘ ..,
.,......) . . . .... .’..! - .~- . .. ..- .—

2 .
. .. ,------ :..-

This nam”er employs the hodograph m~thod introduced. in”to
the theory of compressible fluids by Chaplygin (reference 4)
in 1902. .

An essential feature of the hodogra h method is that the
principle of superposriti,on oL. solution.8 ?each of which repre-
sents a stream function In the hodogra.ph plane) holds. If
VJV,IA w(v,eh . . . are solutions of the differential

equation (17) and i~” Al,’ Aa, . . “. are arbitrary constants,

‘then $(v,6) = Z AnVn~viO) is also a “solution of (17), One

of the main problems of the theory consists in determining
functions w(v,O,) which yie’ld in physical plane flows around
closed bodies all ’’$treamline.s startd’ng’an’d ending at infinity.

‘,
Until the present time, no solutions of this kind have

bee% given except that of V.on’K&rm~n (reference 5) and Tsien ._ ‘~
(reference 6), who replaced the” correct pressure density re-

lat,ion P = ~P1”4 by p = ~ + ~/p.. This simplification
yields a rough approximation and” .ca,nbe employed only when
the maximum speed is sufficiently small.

‘Ionthe p’resent ~a-per”’a’solution which fulfills the con-
ditions described above a’n’d which is based “on the true ~res-

%u’re density relati’on is deriv’e’d’ for the first ‘b=ime;”
... ... -. ,,’ ,..

Twa”e”xamples” have bee”n’considered: one ‘corresp-ending to

a’ rieah”ly” cir”cu’lar domd.n’, the other: corresp”on’ding to a slen-
deY obstacle.’ In the ‘first case the computat’i’on of the

stream pattern has teen carried out completely.

.

4
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. . The foregoing method may be applied to other profiles by
either of two alternative schemes. Another analytic function
g(z) may be chosen and the procedure employed in the present
paper repeated. A combination -of sim le solutions, such as

7tho$d”:glven by Chaplygi’n (r~ferenC& 4 ‘, Bqr”s and Gelbart (ref-
erence 7), or the author (“reference 8, p. 23 and reference 9,
P. 277) may be added to,either of the stream functions _found
in th’e””afore-mentioned examples. In each instance stream
functions may be found “the.tfulfill the previously described __
conditions.,> ., & .- —

The method can be “extended to partly supersonic flows.
One pf the advantages of the foregoing method is that a larg6-
part of the computation is independent of the function ~?
These computations can he car~i’ed out once “and for all and
tabulated, which will greatly facilitate the application of
the method.

As has been seen’ tn the example under consideration, the.
actual calculation of the (subsonic) flow corresponding to q
given function g(Z) does not entail any the’or,etical diffi-
culties. . On the o,ther hand,

●
it does involve a very consider-

able amount of”numerical computation. It iS, consequently,
expedient to use special computational devices, such as punch
cak% “ma”ch.i”nes,the differential analyzb”r, and s-of”orth-,”in
order -to overcome these difficulties. The method desc~i.bed
in the present section has, howeVer, been’ develop’ed-~ith the
assumption that no such special devices (except perhaps an .
ordinary computing (multiplication” and addition) m’a~hin’~~”are
available .

...... .......
:,..-,.,. .,;-”,.,..m.

.

In the sequel to this report the author will .dis.cussthe
use to which these devices may be put in computing comp.ressi.y

ble fluid flows.1 :’ ,
..: ~“~

Brown University
Providence, R. I., May 15, 1944.

,

. ‘iThe flow in the physical plan”e.’for

.

k ~’1.4’ will be
describ-ed on occasion as well as several aerodynamic conse-
quences which follow from the present results.
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APPENDIX I

Other Term of Formula (17)

It is often mope convenient to use an operator which
transforms analytic functions into stream function6 and
which differs slightly from (17). This operator ha~ the
form

if= Irn{H[“”,/’’-;z(l_(l_tw) dt,(, - P)*
–1

+. zQ(d

,[+’’2f’(iz(’ -’’))~t/(’-t2)*
–1

23

..

+ :2Q(2)f+”4fG ‘(1 - ‘2))‘t/(’”- ‘2)*+~- j]
-1

This eperator can be obtained frog (17) by setting -.

g(z)‘=.f+’ (f J= 2(1 -
)

t2) qt/(1 - ta)
*

2
?.

-1 ~?

or

11la

f(z) =.2
f

Z sin d
dg(2Z Sina ‘).d$ + @.

l-r. d(Z sins d) ?-r
o

.

—

.
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APPENDIX 11

Formulas for the Derivatives of T for the Function (8)

.

.
.

.

●



NAOA TN NO. 973 25

gable Ia

(k= -0.5; <= 0.1)

Functionsused in-computingthestreamfunctions

of a compressibleflow.

v/s.

0.272

0.430

0.518

0.551

0.593

0.861

1.165

1.440

1.527

-

M

0,265

0.403

0,47%

0.497

0.528

0.690

0.820

0:901

0.921

2a-2~

-2.62

-1.96

-1.612

-1.51

-1.3S6

-0.79

-0.394

-0.16a

-0.132

Jl)

-0.0299

-0.0602

-0.0909

-0.1115

-0.1267

-0.3009

-0.7033

-1.5671

-2.2682

H-

1.000

1.000

1.002

1.003

1.004

1.015

1.046

1.111

1.145

.

,

,

.

.

Table Ib.- Thetiues ofF,H, Q(n),R(”) (for k=l.4, X.o.1), dmc.i.n.uaedin..~tin.
ttistreum-functionof-a wmpr4 ,ible flow.

.,

I .

,..

J2) J3)-

.00@3

.COW

.U8

.0670

.2307

.7600
1.40&

2.6949

5.4353

11.81&

81.6373

306.6745

.772.3621

00

~(l)

.Cmo

.Owo

-.om9

-.0056

>.019

-.057/+
-.0935

-.1501

-.2@l

-.3870

-.6959

-1.0896

-2.0186

-4.3787

-00

~(z)

~

J4)

.Oooo

.WQ2

.mo8

.0064

.0374

.21.I.61

.521.1

1.3527

3.72Q2

lJ.7558

51.4676

194.4562

954.6$3

.6432.652

4

~

.Oooo

.0010

.m30

.0090

.m35

.0520

.0755

.1o88

.1566

.2275

.52A

.874.3

-w

00

v/s.

.Ocw

.0999

.1992

.2972

.39323

.5341

.5795

.W

.6680

.7U0

.7532

.7945

.8349

.9W

F’

.Omo

.mol

.OxL

.-

.0256

.0866

.1565

.2839

.5245

1.0060

2.0623

4.6583

U2.5662

@.6378

-“

E

1.0003

l.ocm

1.0032
1.-
l. CXYJZ
1.o1.1o
l.o~~

1.~7
1.0359

1.0515

1.0811

1.1o49

1.1517

1.3275

&

J3) ~(o)

3.96C0

&.9W7

3.2141

2.33n

!..7947

L.5901
.

L.4.150

L.2620

L.3.254

.W+7

.7n7

.6555

..0000

M

.CoM

.1OCO

.2033

.30W

.&o

.5CW

.5500

.&Xl

.6500

.7CG0

.75m

.8000

.8500

.9000

..00C0

.0m3

.mol

.0015

.0085

.OM

.ll&l

.2101

.3823

.7089

1.3663

2.8304

6.4082

L7.@38

55●37s3

Oa

.Woo

-.oml

-.091.3

-.0383

-.0395

-.1680

-.3A.96

-.7494

-1.6847

-4.0770

-12.7121

-35.I.357

-U9.6938

-997.3960

-w

.Oooo

-.0020
-.OI.03

---

-.lio3

-.3i52

-.5083

-.S277

-1.3796

-2.3946

-9.0%9

-21.9464

-71.6427

-00

-m

3.8772
2.5096
1.7327
1.2U71
-.8238
-.&06
-.53&

-J&u

-.3203

-.2207

-.1615

-.1015

-.0535

.Oooo

.

.-

1

.-
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~ABLE II .-..

Computationof the stream-function(in the logarithmicplane)of a

compressibleflow generatedby the enalyttcfunction (8).

-A Q To” % ,,T2 T3 @=-o.5) WR.4)

0.02 0.05 -0.0376 -0.0020 0.0000 +0.0000 -0.0365 -0.0400
0.02 U*2O +0.0002 -0.0402 -0.0008 +0.Qool +0.0250 +0.0105
0.02 0.40 +0.0968 4.1550 -0.0049 +o.oo21 +0.1950 +0.0994
0.02 0.60. +0.20s1 -0.3318 -0.0166 +’0.0103 +0.463 +0,0702
0.02 0.80 +0.2975 -0.5588 -d.0413 +0.0326 +0.6518 -u●3030

,0.06 0.08 -0.1159 -0.0044 -0.0003 +0.0000 -0.1162 -0.1212
0.06 0.30 -0.0251 -0.0892 -0.0058 +0.0006 +0.0144 -0.0187
0.06 0.34 ,-o.oo19 -0.1148 -0.0074 +0.0000 +0.0496 +0.0034
0.06 0.40 +0.0345 -0.1582 -0.0105 +0.0016 +0;1062 ‘!-o.0453
0.06 0.50 +0.0964 -0.2418 -0.0174 +0.oo41 +0.2069 +0.1008
0.06 0.7’0 +0.2096 -0.4494 -0.0390 +0.016q +0,4155 i-o,1387
0.06 0.90 +0.2973 .-O.7016 -0.0755 +0.0466 +0.61B1 +0.0038
0.06 1.10 +0 ●3440 -1.0154 -0.1340 +0.1042 +0.8066 -0.4074

0.10 0.15 -0.1791 -o.o154 -0.0019 +0,0000 -0.1870 -0.1852
O.J.O 0.35 -0.0625 -0.1200 -0.0127 +0.0005 +0.0219 -0.0574
0.1o 0.50 +0.0414 -0.2446 -0.0246 +0.0029 +0.1258 +0.0536
O.1o 0.60 +0.1073 -0.3442 -0.0363 +0.0078 +0.2268 +0.1130
0.10 0.70 +0.1664 -0.4564 -0.0505 +0.0135 +0.Z248 tO.1652
0.10 1.00 +0.2975 -0.8540 -0.1387 +0.0683 +0.5936 +0.1361

0.20 0.22 -0.3504 -0.Olai -0.0071 -0.0003 -0.3497 -0.3505
0.20 0.40 -0.1802 -0.1486 -0.0255 -0.001’7. -0.1534 -0.1853
0.20 0.70 -0.0013 -0.5354 -0.0768 +0.0044 +0.1177 +0.0098
0.20 0.8Q +0.1259 -0.5972 -0.0931 +o.olo5 +0 ●2509 +0.1310
O*2O loo +0.2204 -0.8790 -0.1323 +0.0313 +0.4179 +0.2138
0.20 1.10 +0.2544 -l*032a -0.1481 +0.0536 +0.4664 +0:2322

0.50 0.30 -0.4688 +0.0306 +0.0162 -0..0050-0.4689 -0.4692
0.30 0.75 +0.0099 -0.5384 -0.1034 -0.0008 TO,0086 +0.01(34
0.30 0.85 +0.0753 -0.6758 -0.2058 +0.0060 +0.1750 +0.0743
0.30 0.95 +0.lEa7 -0.8222-0.2398 +0.0250 +0.2504 +0.1235
0.30 1.10 +0.1904 -1.0546 -0.2491 +0.0325 +0.3467 +0.1888
0.30 1.20 +0.22P9 -1.2164 -0.3078 +0.0422 +0.4013 +0.2188

0.40 0.35 -0.5617 -0.0258 -0.5616 -0.55’77
0.40 0.60 -0.2034 -0.3274 -0.1682 -0.1543
0.40 0.85 +0.0091 -0.6802 +0.0843 +0.1111
O*4O 0.93 +0.0568 -0.8016 +(I.1457 +0.1770
0.40 1.05 +0.1147 -0.9900 +0.2247 +0.2632
0.40 1*ZO +0.1941 -1.4062 +0.3504

0.60 0.40 -0.6396 +0.0278
0.60 0.45

-0.6860 -0.6376
-0.5273 -0.0422

0.60 0.60
-0.5245 -0.5241

-0.3070 -0.2742 -0.2892 -0.2864
0.60 0.75 -0.15’72 -0.5U.2 ,+3.1239 -0.U89
0.60 0.95 -o●0208 -0.8364 +0.0%36 +0,0419
0.60 loo +0.oo51 -0.9256 +0.0854 +0.0745
0.60 1.15 +0.0683 -1.1744 +0.1446

0.80 0.50 -0.8970 -0.0318 “
0.80 0.70

-0.3959 -0.3962
-0.2158 -0.3878 -0,2022 -0.2148

0.80 0.90 -0.0898 -0.7378 , -0.0640 -0.08W
0.80 1.05 -0.0209‘ -1.0040
0.80

+0.o143 -0.0169
1.1o -0.0017 -1.0934 +0.0366 +0.ocmo

0,80 1.20 +o.0314 -1.2724 i-o.0760 +0.0347
0.00 1.40 +0.0801 -1.6374 +0.1374
0.80 -0.02 -0.2981 i-1.1928 -0.2563 -0.3011

loo 0.54 -0.2520 -0.0436
1.00 0.75

-0.2335 -0.2519
-0.1561 -0.4426 -0.1452 -0.1550

1.00 loo -0.0309 -0.9050 -0.0362 -0.0366,
loo 1.1o -0.oo3a -1.0902
loo 1.20 +0.00L5

,-0.0055 -0.0011
-1.2752 +0.0257 +0.0047

1.00 1.35 +0.0343 -1.5564 +0.0621 +0.0382
loo 0.00 -0.3079 +1.4728 -0.2306 -0.3116

1.20 0.58 -0.1515 -0.0826 -0.1502
1.go

-.o.1513
0.80 -0.1022 -0.5116

1.20
-0.0945

1.05
-0.1009

-0.0426 -0.9890
1.20 1.15

-0.0277 -0.040L
-0.0214, -1.1792 -0.0037

1.20 1.22 -0.0060
-0.0184

-1.3126
l.Eo 1.50 -!-O*OWJ9

+0.Oil’-?-0.0Q48
-1.4650 ~0.0279 +0.0096

l.zo 1.40 +0●0212 -1.6566 +0.0462 +0.0253
1.20 -0.04 t-o.2140 +1.2460 -0.0401’-0.0245
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● Table 111

(k = -0.5; d= +0.1) ‘
&

Computation of the profile tithe physical plane. The flow is

generated by the function (8). The values given below are

#

.

.

*

.

commted for ~oints where q’ = O (approximately)..

A

-0.194

-0.060

-1.000

-0.060

-0.094

-0.600

-1.410

-2.000

-1 ● 000

-1.700

-2.000

-0.720

-0.094

-0.720

-0.094

-0.197

-0.396

-1.000

-1 ● 410

0 ● 000

h-d

-0.294

-0.160

-1.100

-0.160

-0.194

-0.700

-1 ● 510

-2 ● 100

-1.100

-1.800

-2.100

-o ● 820

-0.194

-0.820

-0.194

-0.297

-0.496

-1.100

-1.510

-0.100

9

0.70

0.40

1.20

0.30

0.50

1.00

1.30

1.30

-0.03

-0.10

-o ● 15

-0.02

0.36

-0.02

0.36

O*51

‘o ● 78

1.08

1.17

0.00

7
v~

0.3669

0.3986

0.1251

0 ● 1044,

0.2309

0.4385

-0.0165

-0.0902

6.9885

-0.0062

-0.0792

-12.9584

0.374a

-12.9584

0.3748

0.5404

0.5105

0 ● 1594

-o ● 0153

y g

0.8476

0.8505

0.3829

1.1894

0.9525

0.5050

0.2453

0.02’72

-1.8565

-0,1291

-0.0572

-146.8974

1.0478

-146.8974

1.0478

0.8531

0,6564

0.2950

0.1368

0.6125
.—

dx/d~

-0.5699

-0.4339

-0.3485

-0.5190

-0”.4740

-0.6850

-0.2385

-o ● 5305

64.3002

0.6075

1.0191

243.4653

-0.’5913

243.4653

-0.5913

-o ● 7775

-0.8152

-o ● 4009

-0,1885

dyld~

-O ● 4800

-0.1834

-O ● 8962

-0:1605

-0,2590

-1.0669

-0.8590

-1.9110

-1.9298

-O ● 0609

-o ● 1540

-4e8703

-O*2259

-48703

-0.2259

-0.4400

-0.8065

-o ● 7593

-Oc4448

.

—
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Figure
V2

Figure 2

1
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---- ____ ... —-— —---- 2 )~A

Figure 3

-—

c c

B b

A
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Figure 4.- Nornogramfor the products (28). cos u = l/Q(M).
If ma = T(M,91), ~ = T(M,e2), .... then OT =

Q(M)T(M,Ol), @ = Q(M)l!(h1,02), ... . An obvio-as adjustment

is made when Q(M) < .
i

By this procedure we may obtain any
of the products Q(v Tlj.
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Figure 5
\ 1 L.J

\ .Wl,e;-lj=o “ “ L2

The values of To(A,O) = W(A,9)

= cord. > IX= O fork= -1. f.{

$’(logv,A) = constant are

streamlines of incompressible f.o
\

fluid flow in the logarithmic

_ -plane. I
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Streamlines Vh(v) ,e] = -1
constan$ in the 2Q plane
for k= -0.5 and ~= 0.1

P(2,8;-u5)= -0.(
.
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Figure7

The compressible fluid
flow in the X9 plane.

k= 1.4, a=o.1
%
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if= -0.3

l?igure 8.- ll!hehodograph of the compressible fluid
flow, k = -0.5, ~ = 0.1, k~ax= 0.9,

Mm = 0.52.

Fig. 8

V2
—

a.



.Fig. 9

V2

G

—

I’igure9.- The hociographof the compressible fluid
flow. k = 1.4, a = 0,1, Mm= =C).77,

Mm = 0.32.
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l’igure 10.- The boundary, Bl, of the obstacle. k = -0.5, a = 0.1
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r 21 plane
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23 plane
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(c) Figure 114
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22 plane
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1 25 plane
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